Power Optimizers

A power optimizer is a DC to DC converter technology developed to maximize the energy harvest from solar photovoltaic or wind turbine systems. They do this by individually tuning the performance of the panel or wind turbine through maximum power point tracking, and optionally tuning the output to match the performance of the string inverter. Power optimizers are especially useful when the performance of the power generating components in a distributed system will vary widely, such as due to differences in equipment, shading of light or wind, or being installed facing different directions or widely separated locations.

A power optimizer is a combination of both a string and micro inverter. It is a module-level power electronic (MLPE) device that increases the solar panel system’s energy output by constantly measuring the maximum power point tracking (MPPT) of each individual solar panel and adjusts DC characteristics to maximize energy output. The panel optimizers relay performance characteristics via a monitoring system to facilitate operations and any necessary solar panel maintenance.

Power optimizers for solar applications can be similar to microinverters in that both systems attempt to isolate individual panels in order to improve overall system performance. A smart module is a power optimizer integrated into a solar module. A microinverter essentially combines a power optimizer with a small inverter in a single enclosure that is used on every panel, while the power optimizer leaves the inverter in a separate box and uses only one inverter for the entire array. The claimed advantage to this "hybrid" approach is lower overall system costs, avoiding the distribution of electronics.